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WALL INFLUENCE ON THE AERODYNAMIC CHARACTERISTICS OF 

AN OSCILLATING AIRFOIL 

V. A. Algazin UDC 533.6 

The difference between the aerodynamic characteristics of an airfoil in an unbounded 
fluid and an airfoil in the neighborhood of a wall is of great practical interest. It is of 
interest not only in the design of transport vehicles using wings as lifting surfaces but 
also in the development of new propulsive systems using flapping wings [I]. Computations on 
the unsteady aerodynamic characteristics of airfoils in the neighborhood of a solid boundary 
have been carried out in a number of papers, e.g., [2-4]. A fairly comprehensive review of 
literature in this field is available in [5, 6]. The common feature in all these methods 
[2-6] is that they have been carried out within the framework of linear theory for thin air- 
foils with small camber. There are very few independent results for the nonlinear problem 
(see, e.g., [5, 6]) but even they are only for the case of an airfoil moving extremely close 
to the wall or under steady-state conditions. The nonlinear problem of the flapping motion 
of a thin airfoil in the neighborhood of a solid plane wall in an ideal incompressible fluid 
is investigated in this paper. In this nonlinear problem the shape of the vortex sheet 
behind the airfoil is not specified initially but is determined in the course of the solu- 
tion. The problem has been solved by the method of discrete vortices [7]. 

1. Consider the motion of a thin airfoil in an ideal, incompressible fluid on a solid, 
plane boundary. We introduce a Cartesian coordinate system 01xlyl (nondimensionalized with 
respect to the chord length) in which the fluid is at rest at ~nfinity. Let at time T = 0 
the airfoil start from rest with a specified initial velocity V (xl, Yl, t), where t = VoT/b, 
and Vo is a certain characteristic speed (e.g., Vo = IV(T,)[, T, > 0). The airfoil is re- 
placed by an infinitely thin plate So(t), assuming the effect of thickness to be negligible. 
The vortex wake behind the plate is denoted by S~(t). The fluid motion outside the contour 
S = So U $i is assumed to be potential. 

The contour S(t) is modeled by a vortex sheet of strength y = v o_ -- vo+, and the pres- 
sure jump across the point M~S(t) will be determined by the Cauchy--Lagrange integral 

5 

p_--p+ = Of pV~ - -  ~ V(~, t) do'- -V(s ,  t)(Voa--vea), (1.1) 
0 

where the positive and negative signs represent the limiting values of the functions when 
approaching the contour S(t) from above and below, respectively; the index denotes the pro- 
jection of the vector onto the unit tangent to S(t) in the direction of increasing s; s is 
the arc abcissa of the point M~S(t), measured from the leading edge of the plate; 0 is the 

fluid density; ~o = (~+ + v_)/2; ~e is the translational velocity of the point M. 

Along with the stationary coordinate system 01x~y~, a body-fitted moving system of Car- 
tesian coordinates Oxy is introduced to solve the problem. The x axis is along the chord 
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from the leading edge. Let us assume that at every instant t the contour S(t) is smooth in 
the Lyapunov sense and the function y(s, t) on it belongs to the H* [8] class in the neigh- 
borhood of the leading edge of the contour. This allows us to determine the velocity at any 
point in the fluid and at the point M~S(t) using the well-known Biot--Savart law. The re- 
sulting velocity field is potential outside S(t) and the disturbance velocities damp out at 
infinity everywhere outside S~(t). Satisfying the remaining boundary conditions of the prob- 
lem of the motion of the thin airfoil close to the plane wall (see, e.g., [6]), the following 
system of equations is obtained for the vortex strengths Yo, Y~ on the contours So(t), S~(t): 

1 " { 
o~'~ t) l-ff'--_ ~ +Go(X' ~' h)}d~= 2~Vy(x, t) - -  Sl(')f ?l(a,  t)f:~(xx--~(~'t)_ ~)~ -~ ~2" --~ G1 (x, ~, ~, h)) da 1 . 2) 

for x ~ (0, l ) ;  

~r 
-~ v o(r, t), r (7, tv) = r o(?);  

s2(t) 

,~ '~ (0", ~) do* = (I) (81, 82, t); 
*i(O 

1 .3) 

1 . 4 )  

1 

d ~  ( 1 . 5  
d-7 ?o (x, t) dx  = - -  mx ( l ,  t) Vl ( t ,  t), w = vo - -  V 

0 
f o r  M ~ S ~ ( t ) .  Here ~ = ~ ( y ,  t )  i s  the r a d i u s  v e c t o r  o f  the  p o i n t s  i n  the  v o r t e x  s h e e t  wake 
St(t), which is assumed to be a function of vorticity and time t; ty is the moment the vortex 
y leaves the trailing edge of the airfoil; ~o(Y) is the radius vector of this vortex at t = 
ty; the quantity ~(s~, s2, t) is determined at the moment the vortex element (s~, s2) is 
formed and remains constant for fixed values of st,, s2 on S~(t), though the element itself 
is deformed in accordance with the change in the velocity field; functions Go and G~ take 
into consideration the influence of the wall and are obtained by taking the mirror image of 
the airfoil So(t) and the vortex wake S~(t) with respect to the solid wall y~ = 0, with the 
vortex strengths YZ replaced by their opposites: --Yl (l = 0.1). 

Since the flow segment and the velocity vector V of the motion of the points on the air- 
foil depend on time, the system (1.2)-(1.5) has to be solved with the initial conditions, 
which in the case of motion from rest take the form 

S(0) = S0(0), 7(x,  0) = 0. ( 1 . 6 )  

I f  the  a i r f o i l  i s  s u b j e c t  to  s m a l l ,  s t e a d y  o s c i l l a t i o n s  ( l i n e a r  problem)  the  i n i t i a l  c o n d i -  
t i o n s  (1 .6 )  a re  u n n e c e s s a r y  and the  sys t em ( 1 . 2 ) - ( 1 . 5 )  i s  s i m p l i f i e d .  The c o n s i d e r a t i o n  o f  
n o n l i n e a r  e f f e c t s  a s s o c i a t e d  w i t h  the  d e f o r m a t i o n  of  the  v o r t e x  wake (Eqs.  ( 1 . 3 ) ,  ( 1 . 4 ) )  be -  
h ind  the  o s c i l l a t i n g  a i r f o i l  makes i t  p o s s i b l e  to s o l v e  the  sy s t em ( 1 . 2 ) - ( 1 . 5 )  o n l y  a p p r o x i -  
m a t e l y .  Its solution in this case is sought at a number of instants of time tn, starting 
from to = 0 when the condition (1.6) is satisfied, using the method of discrete vortices [7]. 

The airfoil is divided into N elements (Xk-1, x k) each with a vortex strength 

xh 

Xh-- 1 

The solution of the discretized system of equations (1.2)-(1.5) determines the quantities 
F~ n+1), starting from n = 0. These values are used to determine the continuous vortex layer 

u on So [9], which is necessary both for computing the load distribution on the airfoil and 
also for the determination of the suction forces on it. 

2. The normal force Pq (referred to pV~b/2) acting on the element Soq = {x:xq_1~X~Xq}, 
+ 

is expressed (in accordance with (l.l) (re = ~)) in the form 

Pq = J dP --  Pql -i- Pqt -]- Pq~t, 
S0q 

where Pql determines that part of the force which depends on ~o and the quantities Pqt, Pqit 
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are associated with the variation in circulation around the airfoil 

Pqt : - -  ~ '~ Pqit = - -  2 7~ ~?od~ dx .  
h=l SO q \ X q _  1 

Neglecting the quantities of the order of Fq/N and higher, we get, 

2 d p(n+D 
t9q l  = , ,  qxJ-q ~ 

w h e r e  t h e  c o e f f i c i e n t  ~q d e t e r m i n e s  t h e  l o c a t i o n  (Xq = ( q -  I + ~ q ) / N )  o f  t h e  d i s c r e t e  
v o r t e x  r q  on t h e  e l e m e n t  Soq a s  a f r a c t i o n  o f  i t s  l e n g t h ,  and  

Wqx = 2wx(Xoq, tn+l), Xoq = (q - -  0.5)/N. ( 2 . 1 )  

The suction force Q (referred to pV~b/2) is obtained using the momentum theorem applied 
to the fluid inside a circle of radius E << | with the center at the airfoil leading edge. It 
is possible to show that as g § 0, Q =-~a2/2, where a is the coefficient of the strength of 
the vortex layer at the singularity x-I/=. An approximation of the vortex layer, suggested 
in [9], makes it possible to compute a using F~ +~. 

Nondimensional coefficients of the normal force P and the suction force Q are determined 
as follows : 

N 

c~=P=~Ph,  q=O- 
b . = l  

3. For the practical realization of the method described in See. 2, the algorithm for 
the computation of the aerodynamic characteristics at the (n + l)-th time step is condi- 
tionally divided into a number of stages: l) the selection of the step size in time Atn+~; 

2) the determination of the coordinates ~(n+~) of the vortex wake S x from the solution of the 
q 

Cauchy problem (1.3) for the q-th free vortex 

where 

r(n+l) .(n) 4_ ~,,(n)A~ 
= ~q , " ' l q  C a ~ n + l ~  

~ , q ~ n ,  
( 3 . 1 )  

3) computation of the velocity field ~(n+1) at the given points (2.1) on the airfoil So and 
q 

the vortex wake S1(tn+1); 4) determination of the coefficients Cn, Cq. 

Let us consider some of these stages. Following [7], the time step Atn+~ = tn+1 -- tn is 
selected from the condition 

Atn+l = t/(Nw~(t, tn)). ( 3 . 2 )  

C o n d i t i o n  ( 3 . 2 )  e n s u r e s  u n i f o r m  d i s t r i b u t i o n  o f  v o r t i c e s  i n  t h e  n e i g h b o r h o o d  o f  t h e  a i r f o i l  
t r a i l i n g  e d g e .  The c o o r d i n a t e s  o f  t h e  p o i n t s  on  t h e  v o r t e x  wake  w e r e  d e t e r m i n e d ,  u n l i k e  
[7,  9 ] ,  u s i n g  t h e  s e c o n d - o r d e r  d i f f e r e n c e  s cheme  ( 3 . 1 ) .  

The c o n v e r g e n c e  o f  t h e  n u m e r i c a l  s cheme  was v e r i f i e d  n u m e r i c a l l y  by  c o m p a r i n g  t h e  com- 
p u t e d  r e s u l t s  w i t h  d i f f e r e n t  number  N o f  v o r t i c e s  on t h e  a i r f o i l .  C o m p u t a t i o n a l  r e s u l t s  w i t h  
time step At n and a time step half its value (in view of (3.2) this corresponds to the con- 
dition when the number of elements on the airfoil equals N in one case and then in the other case 
it is 2N), were practically the same. This leads to the conclusion on convergence in the 
given case. 

In order to verify the algorithm for the computation of the aerodynamic characteristics 
of the airfoil in the neighborhood of the wall, its steady motion with velocity V = const = 1 
along the wall at a constant angle of attack ~ is considered. The following results have 
been observed for such an airfoil motion: firstly, unsteady values of the aerodynamic char- 
acteristics monotonically approach certain values which were later chosen as the steady state 
values corresponding to the particular angle of attack; secondly, such a computation of these 
characteristics is quite economical since they are stabilized before the airfoil covers 3-4 
chord lengths. 
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The relation between the ratio of the normal force coefficient Cn, obtained from the 
computation, to the quantity Cn which corresponds to the case of the airfoil motion in an 
unbounded fluid, and the parameter b/h is shown in Fig. I. Here h is the distance from the 
airfoil trailing edge to the wall at different angles of attack (~ = 2, 5, 10, 15, 20, and 
25 ~ for the curves I-6, respectively). It is seen that the presence of the solid wall at 
large angles of attack leads to a reduction in Cn. At relatively short distances to the wall 
and at fairly low angles of attack, the coefficient Cn increases as the wall is approached. 
This result agrees with L. I. Sedov's conclusion [6]. 

The investigation of unsteady aerodynamic characteristics of the airfoil close to the 
wall was carried out for the longitudinal oscillations of the airfoil given by 

y(t) = (yo/b) cos kt, (3.3) 
where yo/b is the nondimensional amplitude of oscillations; k = ~b/Vo is the Strouhal number. 
In addition to the coefficients Cn, Cq we determine the power required to maintain the oscil- 
lations (3;3): 

1 
, 

N~ (t) = - pV b Apyd , 
0 

where ~ is the nondimensional frequency of oscillations, and the thrust coefficient CT = --Cq. 
For the practical application of the flapping airfoil as a means of propulsion, it is neces- 
sary to get the mean value of the coefficients over a period of oscillations T = 2~/k: 

~o+T to+T 

~ c,(t)et ,  No -r-- No(Oet. (3 .4)  ~=- f -  = 
t 0 t O 

The e f f i c i e n c y  is  d e t e r m i n e d  on the  b a s i s  o f  the  a v e r a g e d  q u a n t i t i e s  c-- T and No: 

n = Pg~b~/(2No). (3 .5 )  

In connection with the computation of the quantities (3.4), (3.5) using the above- 
described algorithm to solve the nonlinear problem, the following situation may be observed. 
It is known that the result of averaging any periodic function (with period T) does not depend 
on the point to. However, a different situation arises in the determination of averaged 
aerodynamic characteristics obtained from the solution of the nonlinear problem of an oscil- 
lating airfoil. The dependence of the efficiency n and the normalized thrust coefficient []] 

k~= - % ( Rx ) 
-~ o (~yo) ~ b 

on the initial point of averaging when k = 7, b/h = 0.5, and yo/b = 0.25 are shown in Fig. 2. 

The behavior of the curves is explained by the strong influence of transitional pro- 
cesses on these quantities at the start of the motion from rest. It is worth mentioning 
that in an unbounded fluid (h = ~) this effect of transitional process is extended even more. 
Thus, for the same parameters yo/b = 0.25 and k = ~, but, b/h = 0, the dependence of kT on to 
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is maintained up to to = 18, for q it is up to to = 15, whereas when b/h = 0.5 values of to 
are 14 and 12, respectively. Such a difference can be, apparently, attributed to the sta- 
bilizing action of the wall on the vortex wake behind the oscillating airfoil which in turn 
leads to a reduction of its influence on the aerodynamic characteristics. 

In view of the above-described situation, the coefficient kT and efficiency ~ obtained 
after a repeated averaging with equations of the type (3.4) with a period T = 2~/k were then 
taken as mean values of kT and n. Here the initial point to for the repeated averaging was 
chosen such that the error ~ in determining these quantities was less than 10 -4 when to is 
increased by 0.1To Results of the computation shown in Fig. 2 indicate that the considera- 
tion of 7-8 periods of oscillations are sufficient in the given case to determine the quan- 
tities kT and n. 

4. Consider now some of the results of computations. The dependence of the coeffi- 
cients kT and efficiency on b/h for a Strouhal number k = ~ and different amplitudes of 
longitudinal oscillations is shown in Fig. 3. It is seen that the presence of the wall 
leads to an increase in the thrust coefficient kT for all h when yo/b = 0.01 (curve ]) and 
h > 0.5, and for yo/b ~>0.l (curves 2, 3). The efficiency is reduced because of the increase 
in power required to maintain the oscillations at shorter distances from the wall. 

It may also be mentioned that the computation of the aerodynamic characteristics of the 
oscillating airfoil in an unbounded fluid (b/h = 0) showed a fairly strong influence of the 
amplitude of oscillations yo/b on the thrust coefficient kT, which apparently limits the 
validity of the linear theory for yo > 0.lb. 

The results of the computation of the effect of the wall on the dependence of the thrust 
coefficient and efficiency on the Strouhal number are shown in Fig. 4. The solid lines indi- 
cate the computed values of the coefficients for b/h = 1.67 and amplitudes yo/b = 0.Of; 0.08 
(curves I, 2 respectively), the dashed lines refer to the values of the coefficients obtained 
from the linear theory [I0] for an unbounded fluid (h/h = 0). The solid dots in the same 
figure indicate the experimental results for yo/b = 0.08, b/h = 1.67 (courtesy D. N. Gorelov 
and A. V. Piner). It is seen that the experimental data agree fairly well with the theory. 

] , 

2. 

3. 

4. 
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SPATIALANALOG OF CENTERED RIEMANN AND 

PRANDTL--MEYER WAVES 

V. M. Teshukov UDC 533.6.011+527.985 

In this paper, we prove the existence of solutions of equations of spatial gasdynamics 
that have special properties: waves, centered on arbitrary two-dimensional surfaces in four- 
dimensional space x, t. These solutions are generalizations of the centered Riemann waves 
in the theory of one-dimensional nonstationary motion and centered Prandtl--Meyer waves in 
the theory of planar stationary flows. Characteristics of this form arise in problems of 
the interaction of shock waves with fronts having arbitrary shapes, interaction of shock 
waves and a contact discontinuity, and piston problems. 

I. Formulation of the Problem. We are examining equations that describe the spatial 
instability of flow of a nonviscous, nonthermally conducting ordinary gas [l~ 2]: 

du t V p =  dp 2"" ~ dS ~+~ O , ~ + O c  a ~ v u = v , ~  O, p = $ ( p ,  S), (~.1 

where u is the velocity vector; p, pressure; P, density; S, entropy; c, velocity of sound; t, 
time; x =(x, y, z), radius vector of a point in R3; 7 = (~/~x, ~/~y, ~/~z); d/dr = 3/3t + 
u-V. The function ~(p, S), which gives the equation of state of the ordinary gas, is assumed 
to be analytic. 

A centered wave is a solution of the system (1.1) whose domain is covered by a single 
parameter family of acoustic characteristics passing through the given two-dimensional sur- 
face ?0~E 4= R 3 • R (x~R 3, t~H).. In this case, the wave is said to be centered on Yo. 

In what follows, we examine the problem of a piston. Assume that the solution of system 
(l.l), satisfying the impermeability condition u-Vh = 0 on F is given in a half space, whose 
boundary F is given by the equation h(x) = 0 (Vh=i=O), is determined for O~t~t o This solu- 
tion in what follows is called the unperturbed solution. A perturbation propagating along F 
arises at time t = 0 at the point Q~F: the lateral wall begins to buckle according to a 
definite law so that outside the buckled part, it is given by the equation h(x) = O, while in 
the buckled part r', it is given by equation hi(x, t) = 0. It is assumed that hl > 0 in the 
region occupied by the gas, h~t > 0 on F', and the surfaces h(x) = 0 and hi(x, 0) = 0 are 
tangent at the point Q. The intersection of F and r' forms an edge which moves according to 
a given law along F. Let Yo be a two-dimensional surface and E 4 , traced out by this edge in 
time (Fig. 1 shows a picture illustrating the two-dimensional case). The unperturbed solu- 
tion will describe a gas flow in the region bounded by the acoustic characteristic F~ (~(x, 
t) = o) 

�9 t + u . , v ~ + c t v ( ~ l  = O, (1 .2)  

passing through u (~ > 0 in the region of unperturbed motion). It is necessary to find the 
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